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This article describes the development and implementations of a novel software platform
that supports real-time, science-based policy making on air quality through a user-friendly
interface. The software, RSM-VAT, uses a response surface modeling (RSM) methodology
and serves as a visualization and analysis tool (VAT) for three-dimensional air quality data
obtained by atmospheric models. The software features a number of powerful and intuitive
data visualization functions for illustrating the complex nonlinear relationship between
emission reductions and air quality benefits. The case study of contiguous U.S.
demonstrates that the enhanced RSM-VAT is capable of reproducing the air quality model
results with Normalized Mean Bias <2% and assisting in air quality policy making in near
real time.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Continued economic development has led to air quality
degradation in urban areas throughout the world. Air pollution
is a result of complex interactions among air pollutant emis-
sions, meteorological conditions and a wide variety of atmo-
spheric processes including transport, chemical transformation
hu).

o-Environmental Science
and deposition. To improve air quality without impairing
economic development, strategies of air pollutant emission
control must be carefully formulated by assessing the fate of air
pollutant emissions in the atmosphere. Typically, such assess-
ments are achieved by air quality modeling using science-based
atmospheric models, such as the Community Multi-scale Air
Quality (CMAQ) model (Byun and Schere, 2006; Wang et al.,
jes
c.as, Chinese Academy of Sciences. Published by Elsevier B.V.
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2014a, 2014b), for multiple emission scenarios. However, the
high computational cost associated with the modeling effort
often becomes the bottleneck of the assessment process. In
addition, most atmospheric models used in air quality
management lack a user-friendly interface that can synthe-
size the model results produced from different air pollutant
emission inputs, and do not offer adequate data visualization
for supporting policy making.

To improve the efficiency of data synthesis in air quality
management, it is necessary to develop a tool to translate the
massive amount of model data to policy-relevant visualization.
Ideally, such policy decision support tools should be efficient,
easy-to-use, and capable of estimating air quality changes for
given emission reduction scenarios. In addition, the tools should
offer intuitive policy-related visualizations. Some earlier proto-
types, such as: the IMPAQT— IntegratedModular Program forAir
Quality Tools (Lim et al., 2005) and the GIS-CALPUFF coupled air
quality decision support system (Fraser et al., 2013), have
demonstrated the benefits of a decision support tool for urban
air quality assessmentwith limited visualization features. To our
knowledge, there has not been a comprehensive package that
has been demonstrated to support air quality management at
both urban and regional scales. Since many air quality problems
are of regional scale (Wang et al., 2014a, 2014b), for example
regional haze and trans-boundary transport, an efficient and
powerful tool for supporting decision making in regional air
quality is in great need.

To address this need, we rewrote the code of the re-
sponse surface model (RSM) (Lao et al., 2012) with C# using the
high-dimensional Kriging techniques (Mohammadi et al., 2012;
Xiao et al., 2009) to interpolate the model results of CMAQ
for policy making support. The RSM serves as a statistical
metamodeling interface for rapid assessment of the massive
data of atmosphericmodel results (Ashok et al., 2013). Following
the data assessment, it is essential to couple the model results
in a graphical user interface such as USEPA's Visual Policy
Analyzer (VPA), which allows using slider bars and a mouse to
change emission factors for visualizing the air quality response
(U.S.EPA, 2006). However, VPA has incurred user-friendliness
and data accuracy issues. At this moment, the development
and support of VPA have been discontinued.

In this work, an enhanced response surface model-
visualization and analysis tool (RSM-VAT) is developed for
better understanding and analyzing the established statistical
relationship (RSM) between air pollution emission reductions
and air pollutant concentrations. The statistically generalized
RSM surface by the method of MPerK (MATLAB Parametric
Empirical Kriging) reported in our previous work has demon-
strated that the nonlinear relationship between emission
sources and air quality concentration of PM2.5 (Wang et al.,
2011) or O3 (Xing et al., 2011) can be well analyzed by RSM. The
established nonlinear relationship is not only a foundation of
decision making, but also critical for formulating emission
control strategies. The development of enhanced RSM-VAT is
the extension of our previous work, it aims to provide a series
advanced visualization and analysis functions for validating
RSM prediction results and for examining the nonlinear
interactions among multiple air pollutant precursors, in addi-
tion to instantly generate the air pollutant concentration
surface response to air pollutant emission changes.
 c.a

1. Methodology

Fig. 1 shows the block diagram of the development and
application of the RSM-VAT. The modules of control matrix,
RSM, and quality assurance (QA) are designed to guide the users
through theRSMdevelopment andaccuracyvalidation.Most end
users (policy makers) would directly use the RSM data analysis
module for policy decisions. It greatly improves theuser interface
and visualization accuracy ofVPA for the RSM results. The design
of control matrix, response surface modeling, quality assurance,
and RSM data analysis are described here.

1.1. Design of emission control matrix

RSM aggregates the results of pre-specified CMAQ simula-
tions into a multi-dimensional “response surface” that also
incorporates the acceptable uncertainties in environmental
decision-making. This allows a rapid assessment of air
quality impacts caused by different combinations of emis-
sion sources. These sources are selected as emission control
factors as shown in Table 1. The CMAQ simulations are
performed at a defined set of distributed emission invento-
ries (control scenarios) in a high-dimensional experimental
design space. For example, as one of the source targets
subject to emission control, Electricity Generating Units
(EGUs) NOx emission is set at 0–120% of the base-year level.
The response surface of the CMAQ results attempts to
maintain the model accuracy while minimizing the compu-
tationally expensive CMAQ run at a given emission scenario
within the experimental design space. The RSMmethod uses
statistical techniques to relate a response variable (e.g., the
annual PM2.5 at multiple U.S. receptor sites) to its influencing
factors (e.g., the emission of a pollutant precursor, NOx) from
local and regional emission sources.

The control matrix module (Fig. 1) is to create the
experiment design of emission control matrix. The matrix is
created by sampling the control factors in the design space
(e.g., from 0.00 to 1.20) using Latin Hypercube Sampling— LHS
(Hirabayashi et al., 2011). LHS is often applied to generate
the experimental design for a Kriging model (Kleijnen, 2009).
It is a statistical method for generating a sample of plausible
collections of parameter values from a multidimensional
distribution which is more efficient than random sampling
for a large number of factors. Table 2 shows an example
of emission control matrix created by LHS. The base-year
emission inventory is factored by the weight shown in the
matrix (Table 2), forming 181 emission control scenarios for
CMAQmodel runs. These emission inventory factors, togeth-
er with the identical meteorology and other model input, are
applied in CMAQ simulations to provide the annual PM2.5

concentration estimates for the 181 emission control scenarios.
In order to reduce computational time for such a large number
of annual model runs, the results of 4-monthly (February, April,
July, and October 2001) CMAQ runs over the contiguous US are
utilized in the response surface modeling. These months were
chosen based on greatest predictability of the quarterlymean in
US. The emission projections for three future years (2010, 2015
and 2020) together with 2001 meteorology data (U.S.EPA, 2005)
are used in the CMAQ runs (U.S.EPA, 2006).
jes
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Fig. 1 – The primary components and the typical application process of the developed response surface model-visualization
and analysis tool (RSM-VAT).

Table 1 – Twelve emissions control factors selected for
response surface modeling (RSM) modeling.

Control
factors

Factor description

NOx/EGU NOx IPM (Integrated Planning Model) EGU
(Electricity Generation Unit) point source
emissions

NOx/
NonEGU + area

NOx IPM non-EGU point source, area source, and
agricultural source emissions

NOx/mobile NOx nonroad source and mobile source emissions
SOx/EGU SOx IPM EGU point source emissions
SOx/
NonEGU_Point

SOx IPM Non-EGU point source emissions

SOx/area SOx area source and agricultural source emissions
VOC/all Volatile organic carbon IPM EGU point source, IPM

Non-EGU point source, area source, agricultural
source, nonroad source, and mobile source
emissions

NH3/area Ammonia area source and agricultural source
emissions

NH3/mobile Ammonia non-road source and mobile source
sources

POC & PEC/
EGU + NonEGU

Elemental carbon and organic carbon IPM EGU
point source and IPM Non-EGU point source
emissions

POC & PEC/
mobile

Elemental carbon and organic carbon nonroad
source and mobile source emissions

POC & PEC/area Elemental carbon and organic carbon area
source and agricultural source emissions
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Twelve emission sources, which are treated separately in
local and regional area, are selected for the RSM model
development (Table 1). All the urban emissions are controlled
using the same control factor. Under this circumstance, the
within-city emission is considered “local” and the emissions in
other cities are considered “regional” such that the emission in
one city does not significantly influence the air quality in another
city. This is a reasonable assumption as long as the selected
urban areas are sufficiently distant from each other (Fig. 2). The 8
urban areas include NewYork/Philadelphia (combined), Chicago,
San Joaquin, Atlanta, Salt Lake City, Phoenix, Seattle, and Dallas.

The emission control factors range from 0 to 120%. A zero
control factor means that the emission of interest is reduced
to zero while a 120% factor indicates that the emission is in-
creased by 20%. The LHS method ensures a uniformly distrib-
uted sampling in the high-dimensional experimental design
space such that it can capture the linear and nonlinear
interactions among pollutants. The emission control factors in
the emission control matrix (Tables 1, 2) are selected based on
emission types and source categories. This allows the generated
RSM to evaluate air quality changes resulting from adjusting
each of the twelve emission sources (Table 1) on urban or
regional basis. This experimental design ensures the represen-
tativeness of the data used in the response surface regression.

1.2. Development of response surface modeling

A high-dimensional Kriging approach is applied for the
response surface regression of the CMAQ simulation results
jes
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!Table 2 – Emission control matrix created by control
matrix module using Latin Hypercube Sampling (LHS)
method.

Runa R-1
(base)

… R-178 R-180 R-181

(1) Local/NOx/EGU 1 … 0.110483 1.022551 1.087 341
(2) Local/NOx/

NonEGU + area
1 … 0.027116 0.06448 0.109 682

(3) Local/NOx/mobile 1 … 0.043133 1.049465 0.029 364
(4) Local/SOx/EGU 1 … 1.048884 1.008878 1.023 087
(5) Local/SOx/

NonEGU_Point
1 … 1.086225 0.555295 1.024 059

(6) Local/Sox/area 1 … 0.108373 1.099252 0.353 902
(7) Local/VOC/all 1 … 1.021591 0.036443 1.091 375
(8) Local/NH3/area 1 … 1.049548 1.082221 1.008 858
(9) Local/NH3/mobile 1 … 1.080622 0.521056 0.357 506
(10) Local/POC & PEC/

EGU + NonEGU
1 … 1.084612 0.357084 0.637 807

(11) Local/POC &
PEC/mobile

1 … 0.965029 0.106736 0.522 265

(12) Local/POC &
PEC/area

1 … 1.084325 0.034402 0.281 576

(13) Region/NOx/EGU 1 … 0.762628 1.087254 0.718 672
(14) Region/NOx/

NonEGU + area
1 … 0.765136 0.283111 0.392 529

(15) Region/NOx/
mobile

1 … 0.930531 0.318877 0.085 269

(16) Region/SOx/EGU 1 … 1.155187 1.086086 0.763 455
(17) Region/SOx/

NonEGU_Point
1 … 0.717255 0.260321 0.418 828

(18) Region/SOx/area 1 … 1.013104 0.035435 1.089 675
(19) Region/VOC/all 1 … 0.389028 0.608322 0.266 133
(20) Region/NH3/area 1 … 1.184101 0.032021 0.062 598
(21) Region/NH3/

mobile
1 … 0.060786 0.714711 0.260 525

(22) Region/POC & PEC/
EGU + NonEGU

1 … 0.107094 0.556018 0.036 105

(23) Region/POC &
PEC/mobile

1 … 1.084976 0.635975 0.285 701

(24) Region/POC &
PEC/area

1 … 1.009483 0.634597 1.089 613

a Run #1–171 are used for creating RSM and run #172–181 are used
for out-of-sample validation.
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(Ginsbourger et al., 2013; Jia and Taflanidis, 2013). Kriging is a
geostatistical method based on an exponentially weighted
sum of the sample runs results, which is reported superior to
deterministic methods (Eldrandaly and Abu-Zaid, 2011). It
can approximate highly nonlinear surfaces as long as they are
locally continuous. The predicted changes in the ambient
concentration of PM2.5 in each CMAQ grid cell are modeled as
a function of the weighted average of the modeled responses
among the experimental design space. The weight assigned to
a model output depends on the Euclidean distance between
the factor levels covering the emission control ranges and
the factor levels defining the CMAQ experimental runs. A
Maximum Likelihood Estimation–Experimental Best Linear
Unbiased Predictors (MLE–EBLUPs) Kriging Interpolation
is adopted. We recoded the Parametric Empirical Kriging
algorithm (Kleijnen, 2009; Peng et al., 2006) using C# language
and accelerated the calculation efficiency by multi-threading
technology. The RSM predicted value Y x0ð Þ can be expressed
as:

Y
!

x0ð Þ ¼
Xd
j¼1

f j xð Þβ!j þ z xð Þ ≡ f T0 β
!þ γ!T

0 R
!−1

Yn−F β
!� �

ð1Þ

where, f0 is a d × 1 vector of the regression functions for Y
!

x0ð Þ,
and β

!
is a d × 1 vector for the unknown regression

coefficients; γ0 is the n × 1 vector of correlations of Yn with
Y
!

x0ð Þ; R
!

is a n × n matrix of correlations among the Yn; F is a
n × d matrix of regression functions for the training data; z(x)
is a zero-mean Gaussian stochastic process with correlation
function R(h|ξ) and correlation parameters ξ. R can be estimated
by the product power exponential correlation function:

R hjξð Þ ¼ ∏
d

i¼1
exp −θijhijpi½ � ð2Þ

where, ξ = (θ, p) = (θ1, …, θd, p1, …, pd) with θi ≥ 0 and 0 ≤ pi ≤ 2,
and the correlation parameter ξ is obtained by maximum
likelihood estimation (Li and Sudjianto, 2005; Xing et al.,
2011). Since the RSM is built from CMAQ simulation results,
it has the same strengths and limitations of the CMAQ
modeling system as well as its input data driving the model
runs.
c.a

1.3. Quality assurance of RSM

The developed RSM is validated using a number of model
performance evaluation metrics as shown in Table 1. Indi-
vidual grad cell scatterplot and visual examination of RSM
prediction maps is also conducted to ensure that the spatial
distribution of air quality obtained by the RSM is consistent
with the original CMAQ model results. Cross validation (CV)
was performed. During each CV routine, one of the experi-
mental runs is left out for creating the RSM (CV-RSM). The
CV-RSM predicted data are then verified against the CMAQ
results that are left out. This comparison process is sequen-
tially carried out for 171 times. It is found that the predictions
of CV-RSM and RSM do not have observable differences.
Out-of-sample validation (OOS) is also conducted to evaluate
the RSM performance, which compares RSM-predicted values
to those of CMAQ for a set ofmodel runs not used in developing
the RSM. Ten OOS model runs are evaluated in the case study.
The same performance evaluation metrics (Table 3) were used
for both CV and OOSmethods.

The users also have the options of using add-on sampling
to generate additional runs for CMAQ simulations if the RSM
prediction bias does not meet the desired tolerance. Com-
bined with the original model runs, a new sampling matrix
and additional CMAQ simulation results can be applied to
create a new response relationship. The new RSM can be
examined through the validation process until the desired
accuracy is achieved. Theoretically, the more experimental
runs are used for creating the RSM, the more accurate the RSM
results will be. However, the improvement of accuracy and the
computational cost of CMAQ simulations should be balanced.
The examples of input data file, including: CMAQmodel output
concentration files, emission factor information file, state
jes
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Philadelphia County

Fig. 2 – Study domain and 8 cities of interest in 36 km grid.
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shape file (region boundary map file), area information file
(target area or region file) and controlmatrix file are provided by
U.S.EPA (2006) and can be downloaded by visiting http://www.
abacas-dss.com/. Those data files are utilized to create the RSM
Table 3 – Evaluation metrics of RSM (Response Surface
Model).

Performance
metric

Equationa

Mean Bias
(MB, μg/m3)

MB ¼ 1
N ∑

N

i¼1
Cri−Ccið Þ

Mean Error
(ME, μg/m3)

ME ¼ 1
N ∑

N

i¼1
Cri−Ccij j

Mean
Normalized
Bias (MNB,
−100% to +∞)

Mean
Normalized
Error (MNE,
0% to +∞)

MNB ¼ 1
N ∑

N

i¼1

Cri−Cci
Cci

� �
MNE ¼ 1

N ∑
N

i¼1

Cri−Cci
Cci

����
����

Mean
Fractional Bias
(MFB, −200%
to +200%)

Mean Fractional
Error (MFE, 0%
to +200%)

MFB ¼ 1
N ∑

N

i¼1

Cri−Ccið Þ
CriþCci

2

� � MFE ¼ 1
N ∑

N

i¼1

Cri−Ccij j
CriþCci

2

� �

Normalized
Mean Bias
(NMB, −100%
to + ∞)

Normalized
Mean Error
(NME, 0%
to + ∞)

NMB ¼
∑
N

i¼1
Cri−Ccið Þ

∑
N

i¼1
Cci NME ¼

∑
N

i¼1
Cri−Ccij j

∑
N

i¼1
Cci

a N is the number of grid cells, Cri is the RSM predicted value in grid
i, and Cci is the CMAQ value in grid i.
and to support the visualization and analysis tool in the case
study.
c.c
n

c.a

2. Results & discussion

2.1. Performance of the RSM

The PM2.5 results are used as an example for illustrating
the RSM model performance. Comparison of RSM predic-
tions to the CMAQ simulation results shows good agree-
ment in both the 171 CV cases and the 10 OOS cases
(Fig. 3). The median values of NMB, NME, MFB and MFE for
the OOS cases (0.18–0.85%) in the box-plot are slightly
higher than those of CV cases (−0.31%–0.87%). We choose
Case #178 whose MFB is the highest at 3.69% and Case #180
whose MFB is the lowest at −0.11% (Fig. 3, line chart) to
further analyze the model accuracy. Shown as Fig. 4a, the
RSM accurately reproduces the results of Case #180
and slightly over-predicts those of Case #178. The
over-predictions of Case #178 can be viewed clearly when
we compare the base case concentration reduction in
Fig. 4b because of the amplified coordinate axis. Fig. 5
shows that the concentration distribution map of RSM
predicted values can well coordinate with that of the
CMAQ simulation results. The slight biases seem more
easily occurred in the regions with high PM2.5 concentra-
tion because of the greater emission reduction (Fig. 5,
RSM–CMAQ), while the biases of these regions are less than
0.25 μg/m3 compared to their ambient PM2.5 concentration from
11.58 to 16.54 μg/m3 using San Joaquin and New York/Philadel-
phia as examples. Comparing the LHS sampling values between
the control factors of Case #178 and Case #180 listed in Table 2,
the control factor of “region/NH3/Area” in Case #178 is 1.184101
and only 0.032021 in Case #180. Additional experiment runs for
the emission control factors having a significant impact on
jes
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Fig. 3 – Normalized Mean Bias (NMB), Normalized Mean Error (NME), Mean Fractional Bias (MFB) and Mean Fractional Error
(MFE) over (a) the 10 outside of the experimental design runs by out-of-sample (OOS) validation, and (b) the 171 control
scenarios used to create RSM by cross-validation (CV); the line chart evaluates the comparison percentage values (Y) with
individual case number (X), and the box-plot demonstrates the statistical analysis of the bias for all of the 10 OOS or the 171 CV
cases.
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Fig. 4 – X–Y scatterplot for the concentrations of PM2.5 (μg/m3) simulated by CMAQ (X, Community Multi-scale Air Quality) and
predicted by RSM (Y, Response Surface Model). (a) RSM vs. CMAQ, (b) the CMAQ base case concentration reduction (predicted or
simulated value subtracts the concentration of CMAQ base case) of RSM vs. CMAQ.

102 J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 2 7 ( 2 0 1 5 ) 9 7 – 1 0 7

http://www.jesc.ac.cn
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0 15μg/m3 0 0.3μg/m3

Fig. 5 – Concentration and different (RSM subtract CMAQ) maps for CMAQ simulated results and RSM predicted values created
by the function of “comparison plot”.

103J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 2 7 ( 2 0 1 5 ) 9 7 – 1 0 7
PM2.5 are necessary if the RSM model accuracy needs to be
further improved.

Validation & QA module also summarizes the values of the
performancemetrics for the RSM (Table 4). Themean bias is <2%
and the maximum bias is <6% in the test cases. Increasing the
sampling density will further improve the RSM prediction
accuracy (Xing et al., 2011). The add-on sampling function of
the control matrix module allows users to choose the factors,
and to set the number of samples and the factor range. The
module uses LHS to generate a sub-matrix supplementing the
existing-matrix for additional sampling runs. For example, to
further reduce the difference between RSM and CMAQ results,
one can use the function of “add-on sampling” to generate
additional 20 experiment runs. The CMAQ simulation results of
the 20 additional runs together are thenused to recreate theRSM.

2.2. RSM data analysis and visualization

The developed RSM-VAT provides a series of visualization and
analytical functions for supporting decisionmaking. Although
the quality assurance module also provides visualized verifi-
cations for the RSM prediction against CMAQ results (Fig. 5)
and for different CMAQ experiment runs, decision support is
mainly provided by the RSM data analysis module. Fig. 6 lists
the different input data files or configurations for different
function modules, and shows the screenshots of the instant/
real-time visualization and analysis features of RSM-VAT,which
include 2D and 3D maps (Fig. 6a, b) for instant overview of air
quality response, bar charts (Fig. 6c, d, e, f) for quantitatively
analyzing and comparing the effectiveness of emission reduc-
tion, and contour plots (Fig. 6g, h) for dynamically description of
Table 4 – Results of cross- and out-of-sample validations gener

Performance metric Cross-validation (171 scenario

Mean Minimum Ma

MB (μg/m3) 0.0005 −0.0587
ME (μg/m3) 0.0328 0.0098
MNB (%) 0.03% −1.41%
MNE (%) 0.80% 0.22%
MFB (%) 0.02% −1.43%
MFE (%) 0.79% 0.23%
NMB (%) 0.03% −2.04%
NME (%) 1.13% 0.33%
the non-liner or liner relationship between two single/groups of
emission control factors.

The RSM-VAT allows instantaneous visualization of the
response surface of CMAQ outputs corresponding to emission
changes. For example, users canchangeanyemission factors and
view the impact on the ambient concentration of PM2.5 instantly.
Fig. 7 displays the 2D and 3Dmap examples of the RSM-VAT. The
3Dmap has an instant three-dimensional visual effect for the air
quality changes, while 2D map can identify these changes in
different administrative regions intuitively. Although VPA also
provides thevisualizationof 2Dand3Dmaps, it doesnothave the
other visualization functions to support quantitative evaluation
of the interrelationship among emission control factors. The bar
charts and contour plots are important features for analyzing the
complex relationship between local/regional emission reduction
and their air quality effect.

2.3. Case study for decision making support

A test case is employed to illustrate how the RSM-VAT can be
used to assist in air quality decisionmaking support. Consider
that a policy maker attempts to know: (1) what emission
reduction is more effective for achieving the targeted air
quality, (2) which emission source has a greater impact on air
quality, and (3) what is the most effective emission reduction
strategy for improving air quality? The answers can be
provided with the RSM-VAT as demonstrated.

All of the emission sources (control factors) listed in
Table 2 has different degrees of contribution to PM2.5 which is
a public-focused complex pollutant (Zhuang et al., 2014). The
relative contributions to PM2.5 of regional and urban
jes
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ated by the function listed in “evaluation metrics of RSM”.

s) Out-of-sample validation (10 scenarios)

ximum Mean Minimum Maximum

0.1513 0.0448 −0.0209 0.1933
0.1517 0.0588 0.0084 0.1933
3.77% 1.03% −0.51% 3.81%
3.78% 1.39% 0.25% 3.81%
3.62% 0.99% −0.51% 3.69%
3.63% 1.35% 0.25% 3.69%
5.31% 1.52% −0.75% 5.93%
5.31% 2.00% 0.30% 5.93%
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Functional interfaces for RSM data analysis

Fig. 6 – Visualization and analysis features of the RSM-VAT. The main functional modules are: (a) 2-D map, (b) 3-D map, (c)
regional and local emission sources control effects, (d) air quality improvement on selected regions/cities, (e) comparison of
multi-regions/cities for multi-emission–reduction-ratios, (f) regional and local emission sources control effects for chosen
emission sources, (g) 2-D color filled contour, (h) 2-D contour.
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emission sources for the eight urban areas (Fig. 2) can be
obtained by using the regional and local emission control
effect comparison plot function shown in Fig. 6f. The
comparison result shows that the regional emissions have
a greater air quality impact in Chicago while the urban
emissions in San Joaquin are more important than the
regional emissions. Additional information can be obtained
by investigating the response curves of PM2.5 caused by the
changes of regional and local emissions using the contour
plot. For example, Fig. 8a shows that reducing regional
emissions is more effective in controlling PM2.5 compared
to reducing local emissions in Chicago. In contrast, the
benefit caused by the local emission reduction in San Joaquin
is slightly greater than that of regional emissions (Fig. 8b).
Analyses can also be carried out by source categories and
emission types for a subset of the geographic areas. The
functions shown in Fig. 9 allows user to compare the
cumulative impact and the different source contributions to
PM2.5 decrease caused by regional and local emission
reduction under different emission control scenarios. The
results in Fig. 9 show that the regional area-NH3 emission
and EGU-SOx emission have a greater impact on PM2.5 in
Chicago, while the local emission of area-NH3 and regional
emission ofmobile NOx have a greater impact on PM2.5 in San
Joaquin. Therefore, we can use a combination of the contour
plot (Fig. 8) and bar chart (Fig. 9) to provide sound and
quantitative air quality improvement suggestions for differ-
ent cities; for example, if we want to lower the concentration
of annual PM2.5 around 1.5 μg/m3 in Chicago and San Joaquin,
both of the regional and local emission sources of Chicago
will be reduced down to 83.5% (Figs. 8a, 9), while those of San
Joaquin will be reduced down to 52.8% (Figs. 8b, 9); in
addition, the regional EGU-SOx and area-NH3 for Chicago,
and local area-NH3, regional and local mobile NOx for San
Joaquin should be focused on (Fig. 9). An additional CMAQ
simulation for the emission reduction scenario of Chicago
down to 83.5% was run to further investigate the accuracy of
RSM. The comparison results show that RSM can well
reproduce the simulation results of CMAQ (Fig. 10a) with
the deviation of PM2.5 concentrations less than 0.3 μg/m3

(Fig. 10b) and MFB = 0.072%.
c.a
3. Conclusions

This article describes the development and application of a
response surface modeling-visualization and analysis tool
jes
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a   Emission control factors 0.50 b   Emission control factors 1.20 

Fig. 7 – Visualization effects of 2D and 3D contour for PM2.5 concentration at emission control factors set to (a) 0.50 and (b) 1.2.
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(RSM-VAT) for supporting the decision making of air quality
policy. The RSM is based on a new approach that aggregates
pre-specified air quality modeling results into a multi-
dimensional “response surface”. A sophisticated, high-
dimensional Kriging interpolation approach is implement-
ed in the development. It is shown that the RSM can
reproduce the results from individual CMAQ simulations
accurately.
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TheRSM-VAT is implementedonWindowsoperation system
andhas a user-friendly interface. TheU.S. case study shown that
users can easily obtain the graphic decision supports by entering
emission control factors and/or clicking themouse. The decision
support features include air quality benefits resulted from
emission reductions, determination of the relative importance
of regional and local emission sources, and identification of
important emission sources. RSM-VAT can also be used
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down to 83.5% in Chicago and 52.8% in San Joaquin for lowering 1.5 μg/m3 annual PM2.5.
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internationally for various model domains after redesigning the
emission control factors and the experimental model runs. We
are trying to use RSM-VAT to assist evaluation of the emission
control impacts on air quality among the cites/areas within
Yangtze River Delta (YRD), China. The current YRD experi-
ment results for two months (January and August, 2010) can
be downloaded fromourwebsite of http://www.abacas-dss.com/.
Chicago: R&L emission down to 83.5%
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Fig. 10 – Comparison of the PM2.5 (μg/m3) concentrations simula
sources inside and outside Chicago down to 83.5%. (a) X–Y scatte
CMAQ, and (b) the concentration difference (RSM subtract CMAQ
Further improvement on the accuracy of RSM can
be achieved by additional sampling model runs,
although the added computational cost should also be
considered. The RSM methodology and the visualization
tool demonstrated in this work represent a step
forward to effective and efficient science-based decision
support.
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